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Abstract

Artificial intelligence algorithms have been known to perform well at board games
(Backgammon, Chess, Go, ...). Their level surpass best human players” when situ-
ations are easy to represent, and when observations give 100% of total information.
However, contract bridge is a card game which does not give such conditions (hid-
den cards). Competing at a high level becomes more difficult for classic learning
algorithms. Reinforcement learning is a branch of machine learning, which mimics
human learning style. We propose some reinforcement learning techniques applied
to Contract Bridge. Using Q-learning and SARSA, and adapting theses methods to
bridge, learning agents converge to good players in reasonable time.

Keywords: artificial intelligence, machine learning, reinforcement learning, imper-
fect information, card game, contract bridge
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List of Abbreviations

Artificial Intelligence
Reinforcement Learning
Markov Decision Processes
State—Action—-Reward-State—Action (RL method)
Deep Q-Network (RL method)
North-South

East-West

Honour Points

Notrump

Ace (Card)

King (Card)

Queen (Card)

Jack (Card)
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Glossary (Contract Bridge)

Trick

Hand

Suit

Contract

Notrump

Honour points

Represents the two pairs (teams) of the game of contract bridge as they
would appear on a NS-oriented bird-eye view: N at the top, S at the
bottom, W on the left and E on the right. NS plays against EW.

Round of play. Step of the game where each player plays one card in
turn, clockwise. After each trick, a point is awarded to the winning
team.

Set of a player’s cards.

Type of cards: spades (#), hearts (©), diamonds (<), and clubs (&)
(listed from strongest to weakest).

The result of the bidding phase. It is defined by a number (between
7 and 13) and a suit, which can also be notrump. After all cards
are played, the contract determines which pair scores points, and the
amount of points they score.

Type of contract where no suit is dominant.
Metric which defines the strength of a hand, based on the number of

high cards.
HP = 4% |A| 4+ 3 [K| + 2% |Q| + |/






Introduction

Ishii Laborator is one of Kyoto University’s Graduate School of Inforrnatic re-
search laboratory. The main goal of this project is to open perspectives about artifi-
cial intelligence applied to contract bridge, which is a 4-player (2 vs. 2) card game.
The main prerequisites for this task are: a good set of knowledge in programming,
learning theory, and the will to perform research.

The schedule was not precisely set at the start of the project: there was a general
guideline, a starting point, as well as previous researches performed at Ishii Lab
that dissected other board games’ artificial intelligence techniques. Those past re-
searches were shared by different students. Usually, the first phase led to assump-
tions and a semi-advanced learning agent that could compete at a moderate level.
The second main step involved more advances methods and a stronger agent. My
project belongs to the first step of such research, and is meant to set the bases.

I started without knowledge about the game of contract bridge: in order to develop
gaming agents, an important process is to first understand the game and the in-
volved strategies, as well as reading publications about other artificial intelligence
research. Similarly, my experience with machine learning algorithms before the start
of the project was limited to what I learned in class: reading publications, tutorials,
and documentation in general is key to learn how to apply such methods.

Thttp://ishiilab. jp/kyoto/en/
“http://www.i.kyoto-u.ac.jp/en/


http://ishiilab.jp/kyoto/en/
http://www.i.kyoto-u.ac.jp/en/

Context

Ishii lab is a research laboratory which belongs to the Systems Science department
of the Graduate School of Informatics at Kyoto University. There are six main cate-
gories among the research themes:

e Computational cognitive psychology

Prediction-based models of human auditory system

Statistical learning

Reinforcement learning
e Neuroinformatics
e Bioinformatics

The project belongs to the reinforcement learning section. Thus, it complements
themes like robot behavior learning in open environments, or modeling mecha-
nisms of human behavior.

Ishii lab offers computational resources to researchers. It includes CPUs and GPUs.
They are often used to train heavy models, like any kind of complex learning algo-
rithm applied to a substantial set of data. A large part of the research performed at
this laboratory involves computer vision problems: specific brain region representa-
tion, brain encoding and decoding system, object detection, and image information
transfer are some of the examples.

Around 30 people work everyday at Ishii Lab. In the buildings, there are two main
rooms where students and researchers perform their own research work. Confer-
ence rooms are available for diverse types of talks or meetings. A lot of conferences
take place on a weekly basis. For example, a weekly lab seminar is hosted every
Thursday, and each member presents the advancement of their research in turns.
There are journal clubs too: after the research presentation, someone quickly in-
troduce a scientific paper that they like, in order to create a discussion and widen
scientific ideas.

Ishii lab is organized as follows: each student and each researcher has their own
research topic. It is supervised by associate professors or professors, so that each re-
search follows the right path. The research topic tackled during my project is being
performed within Shin ISHII (professor at the Graduate School of Informatics & lab
director) and Ken NAKAE's (project researcher associate) supervision. During the
project, Prof. Ishii and Mr. Nakae are here to have discussions, define the guideline,
and introduce new methods to me in order to include them in the research.



Overview

3.1 Main Issue

The goal of this research is to analyze reinforcement learning-based methods ap-
plied to contract bridge, and their performances.

3.2 Objectives

All along the project, meetings with Prof. Ishii and Mr. Nakae regularly take place
in order to adjust the focus based on the advancement and results.

There are a few unavoidable steps that need to be explored:

e First of all, the game of contract bridge needs to be understood well. The rules
and the basic playing strategies are important to know.

e State-of-the-art Al methods are essential to move on and set the guideline of
the research. In order to gather them, scientific papers about this topic and
other relevant themes must be explored.

e Build a clean implementation of the game, anticipating the fact that the learn-
ing algorithms return an action (i.e., a card). There must be functions that take
those actions as input and update the environment subsequently.

e Start small to go big. Define the range of focus: there is a lot to explore in con-
tract bridge, so concentrating first on some particular situations is key. Having
deep understanding of a fraction of the environment will help to widen the
results to the entire game.

e Implement, test, and adjust learning algorithms. Based on the results and the
information they bring, shift the focus and keep looking deeper at some spe-
cific points.

3.3 Contract Bridge

Contract bridge is a 52 cards, 4-player (N, S, E, W) game. It is a cooperative game
within a team, and competitive between teams (NS & EW). For each observation of
the table, information is incomplete, since most cards are hidden to other players.
In order to win, a pair must score 100 points. The game ends when a team reaches
100 points.
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3.3.1 Dealing

At the start of a new game, a deck of cards is randomly shuffled, and each player on
the table is given 13 cards. To prepare the next step, players analyze their hand.

3.3.2 Bidding for tricks

The research project only focuses on playing, not bidding. However, in order to un-
derstand playing, having a solid grasp of the first phase is necessary.

Bidding is the first important phase of the game. A good bidding often implies
scoring some points. This step can be compared to an auction for the number of
targeted winning tricks. Usually, the pair with the strongest combined hand should
win the auction. In other words, they should aim at winning more tricks since their
cards are stronger.

During the bidding phase, players call what contract they want in turn (clockwise).
The calls can be any contract higher than the current one, or "PASS". When three
"PASS" happen in a row, the bidding phase is finished and the contract is the last
call. Let us have a look at a time series representation of a bidding example:

N: 10 -E: 18 - S: INT - W: PASS - N: 2Q - E: PASS - S: PASS - W: PASS

The NS pair won the bidding phase and the contract is 2. They will then try to
take 2 + 6 = 8 out of 13 tricks during the paying phase.

The difficulty is that every player hides their hand, so each pair must be able to
communicate through bidding calls (they cannot use any other mean of communi-
cation). In order to do so, bidding standards are translations from bid to the distri-
bution of one’s hand. For example, in the "Standard American bidding", which is
the most famous standard, the opening call 2NT indicates that the player has a very
strong hand. Each pair knows which is the other pair’s bidding standard.

Tricks taken 7 8 9 10 11 12 13

Clubs () 20 (1)  40(2%) 60 (3k) 80 (4%) 100 (5&) 120 (6&) 140 (7&)
Diamonds (¢) 20(1$)  40(20)  60(3%)  80(40) 100 (50) 120 (6¢) 140 (7<)
Hearts (Q) 30(19)  6029)  90(3Y)  120(4Y) 150 (5¥) 180 (6%) 210 (7Q)
Spades (#) 30(16) 60 (24) 90 (34) 120 (44) 150 (54) 180 (64) 210 (74)
Notrump (NT) 40 (INT) 70 (2NT) 100 3NT) 130 4NT) 160 (5NT) 190 (6NT) 220 (7NT)

TABLE 3.1: Table of all different contracts that can happen, how many
points they represent, and their abbreviation.

The higher the score, the higher the difficulty of the contract. Based on this notion,
there is an order for bidding: starting with the weakest 1&, 1, 10, 1#, 2&, 23, ...,
and ending with the strongest 6NT, 7é, 7, 7Q, 7#, 7NT. In Table this hierarchy
goes from the top left, to the bottom right, column by column.

Other examples:
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e If NS wins the bidding phase with a "1 Clubs" contract (abbreviated 1é), it
means that they have to take 6 + 1 = 7 tricks out of 13 to score 20 points. This
contract is the weakest of all, since the club suit is the weakest one, and taking
7 tricks would mean that EW takes 6 tricks (the smallest winning margin).

e If NS wins the bidding phase with a 40 contract, they have to take 6 + 4 =
10 tricks out of 13 to score 120 points. Winning this contract ends the game
because the 100 points limit is reached. However, the difficulty of taking 10
tricks is high and such decision involves having good hands.

3.3.3 Playing the hand

Once the bidding phase is done, here are the
new pieces of information about the game:

AK
e The contract, which determines the thresh- g Q864
old for winning or losing the game, and the 7432
dominant suit. The dominant suit involves *T63
specific rules for the playing phase. a3 N 7654
e The player who called the last bid is called “VT95 W E ©)732
the declarer (North in the first example). ©QT86 S OAK
His teammate (South), who is called the &J987 »KQ4
dummy, puts his cards on the table so that AQJTI8
every player can see them. Everybody else VAK
keeps their cards hidden. From that point, 2]2 22

13 rounds of a card-strength competition
starts. For each trick, the declarer calls the
play for himself and the dummy, whereas  gigugg 3.1: Bridge hands diagram
players of the opposing pair play their own

cards. The player on the left of the declarer

starts playing for the first trick (East in our

example).

Note: for cards of the same suit, the ranking is A-K-Q-J-10-9-8-7-6-5-4-3-2, A being
the strongest one.

Notrump Contract

If the suit of the contract is NT, it means that no suit has special powers. To start,
each player plays one card in turn (clockwise). The first card on the table determines
the dominant suit. If players have cards of the dominant suit, they have to play one
of them. Otherwise, they play any other card. If any of the second, third, or fourth
card is different from the dominant suit, then it is a losing card. When four cards
have been played, the strongest card wins (only taking in account the dominant suit
ones).

After the first trick, the four cards are put away, the pair to which the winner be-
longs leads one trick to zero. Players start the same process again, and the winner
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of the previous trick starts (the dominant suit can change at every trick).

Example, if E starts: E: 30 - S: 34 - W: KO - N: 20. Here, EW won the trick be-
cause KO is the strongest card of heart on the table. Based on what S played, it is
clear that this player does not have any heart cards left. N played 20 because he
could not beat KO, and tried to waste his lowest heart card. W will start to play the
next trick.

Trump Contract

If the contract is different from NT, then a suit has special powers. It is the one which
appears in the contract name, so player must choose the contract wisely. In trump
play, the notion of dominant suit remains, and it is still determined by the first card
on the table.

However, the difference is that if a player plays second, third, or fourth, and has
no more dominant suit cards, they can win the trick by playing the trump suit. If
there are several dominant suit cards on the table, the strongest one wins. If the
dominant suit is the trump suit, the trick is played with NT rules, because no other
suit overpowers the trump suit.

Example, if the contract is 40, and E starts this trick:

E: 34 -S: 94 - W: J& - N: 2. Here, NS won the trick because heart suit (20) over-
powers other suits. Based on what N played, it is clear that this player does not have
any spade cards left.

Example, if the contract is 2<>, and E starts this trick:
E: 34 -5:94 - W: J& - N: 2&. Here, EW won the trick because J# is the strongest
card. Every player still had at least one spade card left.

3.3.4 Scoring

At the end of all 13 tricks, each pair counts how many tricks they won and check
if the contract have been reached. If it is the case, the declarer’s team scores the
amount of point that the contract represents, and the other team does not score
points. Otherwise, the declarer’s team scores zero points and their opponents score
some. The higher the number of tricks the declaring side falls short of the contract,
the more their opponents score (usually, 50 points per "undertrick").

For example:

e The contract is 4é&, the declarer is S, and the final score is 10 tricks to 3 in favor
of NS. So NS scores 80 points and EW scores 0 points.

e The contract is 2NT, the declarer is E, and the final score is 7 tricks to 6 in favor
of EW. So EW scores 0 points, and NS scores 50 points.
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3.4 Reinforcement Learning

3.4.1 Machine Learning in general

Machine learning regroups all methods which teach machines how to solve prob-
lems thanks to examples, and without any explicit logic.

In order to build a machine learning algorithm, there are steps to follow. First,
models have to be trained. They must be fed with coherent data in order to learn
patterns. Then, performances are tested, whether a test set or new data is involved.
It is a general notion, but there are three main types of machine learning algorithms:
supervised learning, unsupervised learning, and reinforcement learning.

Supervised Learning

Such techniques involve inputs (also called observations, states, variables) and out-
puts (actions, classes, vector of probability). Supervised learning gathers techniques
which take labeled data as input. The label is the intended outcome. It is similar to
learning by seeing a list of examples. For instance, in an image classification prob-
lem solved with supervised learning, (image, 1abel) can be a good form of data for
the learning phase. The trained algorithm should then be able to associate the most
probable label to input images contains.

Examples of algorithms: Support Vector Machines (SVM), Linear regression, Lo-
gistic regression, Decision trees, Linear Discriminant Analysis (LDA), Neural net-
works, ...

Pros: The focus is easy to specify through the learning data set. Also, in a classifi-
cation problem, the number of classes is set by the learning inputs (decided by the
user).

Cons: If the algorithm has a low convergence rate, it may need to learn from a lot
of data. Thus, labeling big data could be a limit.

In the previously introduced example, if the training data set contains images of cats
and dogs, the final algorithm cannot recognize cows.

In the case of neural networks, and taking as example image classification, slightly
modified images can be misclassified. These are called "adversarial examples" (Good-
fellow, Shlens, and Szegedy, 2015). Carefully selected imperceptibly small vector
added to the input changes the classification of the image.

Unsupervised Learning

Unsupervised learning is useful when training examples are not labeled. Algo-
rithms take care of finding the right patterns on their own. It is close from human’s
way of learning: deciding in which situation they are, by observing and finding
similarities of things. Such methods are used on selling websites, in order to group
items, and build recommendation systems.
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Examples of algorithms: K-means, Mixture models, Expectation-Maximization (EM)
algorithm, Principal Components Analysis (PCA), Independent Component Analy-
sis (ICA), ...

Pros: It is convenient to gather unlabeled data: it does not require person inter-
vention.

Cons: As the algorithm learns its own way, the results may be hard to explain.
In the same way, precision can be low, because the model does not understand the
focus. For example, in social networks analysis, the goal can be to analyze users,
and cluster them. Hypotheses often describe users groups as: "conversation-driven
users”, "reserved/silent users", "popular users", ... However, even if humans can
naturally pick the right metrics to make such groups, unsupervised learning algo-

rithm are sometimes imprecise.

Reinforcement Learning

Reinforcement learning (Introduced and developed by: Sutton and Barto, 1998)
mimics best how humans and animals learn to behave. The important notion is
learning thanks to trials and errors, in order to optimize future steps.

The setup is as follows: the agent (program) is progressing inside a dynamic envi-
ronment. It is given observations, and it has to react with actions. Sometimes, a
reward is given, based on how well the agent is doing. Reward appears either after
each action, or after a certain time (see Figure .

r Agent ]

\

Action ( ) State, Reward

r

Environment ]

\.

FIGURE 3.2: Reinforcement Learning basic idea. The reward is not al-
ways immediate: the result of a behavior can sometimes appear after
several actions.

The training phase can be compared to a baby learning how to do things: at first,
the agent does not know the right actions to do, so it has to explore a lot in order to
converge to a good behavior. It is called exploration phase. The best way to explore
is to behave randomly. ¢ is the exploration rate. In other words, it is the probability
of choosing a random action, rather than the theoretical optimal one. During the
exploration phase, € tends to 1.

After it is trained, the RL agent is close to an adult: it acts based on its memory and
the rules that it learned in the past. Sometimes, it tries new things, but not as much
as before. It is called exploitation phase. The probability of choosing the optimal
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move is higher: ¢ tends to 0.

RL is better than supervised learning at solving problems that generate a high amount
of states and actions (i.e. more than a human could handle). In supervised learning,
all pairs would need to be labeled in order to train a model. However, in RL, the
model trains itself with a trial and error process. In the early 1990s, RL has become
popular in the Al and machine learning research field, mostly because that notion.
Reward and punishment are assigned, without having to establish how to perform
the task.

Markov Decision Processes: There is a link between the setup of a RL problem
and MDPs.

Markov Decision Processes Example in RL
Finite state set: S Every configuration of a contract bridge game.
Finite action set: A Every possible move.

State transition probability function: What the opponent does.

T(s¢+1l5t,ar)

Reward function: R(s;, at,S;41) Whether the agent wins the game.

Discount factor: 7y € [0, 1] The weight of previous decisions and their outcome.

TABLE 3.2: Examples of MDPs representation in a RL problem (playing
bridge).

MDPs also make each state s; independent from every past states s;_1,5,,... In
other words, each state alone contains the useful information from the history.

Bellman equation: The Bellman equation is an important concept for solving op-
timization problems. It uses dynamic programming idea to find the optimal score
value V, and is given by:

V(st) = max [R(st,a) +9 Y. T(sis1lst ar) X V(st+1)] (3.1)

$t+1€S

It represents a relationship between the value of a state, the immediate reward, and
the value for the future steps. The probability function passes the knowledge of
every possibilities s; 1 that the environment can give after performing an action
a. The Bellman equation averages each of these outcomes and weights them by
probability of occurrence. In other words, the value of the first state is equal to
the discounted (thanks to ) value of the expected next state, added to the reward
expected along the way.

V(s¢) is the unique solution for the Bellman equation. This equation is the founda-
tion of many optimization problems, including the reinforcement learning ones that
are going to be introduced.
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3.4.2 Definition of Q-learning

Perfecting games has always been an interest for humans. Along history, researches
and computational power have evolved in cycles: computational power helps re-
searchers to test their assumptions, and when methods become too computation-
ally costly, developing more advanced methods becomes the focus while waiting
for new machines.

Q-learning is first introduced in order to counter the lack of computational power
towards neural networks (Watkins, 1989; Watkins and Dayan, 1992). For a particu-
lar state, an action is selected by the Q-learning agent, and evaluated based on its
immediate reward or penalty. Generalizing this task to all actions for all states, the
best overall moves are determined by long-term discounted reward. It is a primitive
form of learning, but it can operate as the basis of more sophisticated devices.

The knowledge of the learning agent is stored in a g-table, which is a 2-dimension
table (one for the states, one for the actions). Each g-value Q(s;, a;) corresponds to
the estimated score when choosing the action a; at state s;. It is defined as follows:

Q(st,at) < Q(st,ar) +a |:rt+1 + y max Q(s¢y1,a) — Q(St,at)] (3.2)

Where « is the learning rate (how much the current value is updated), 4,1 the re-
ward given after performing a; at s, -y the discount factor (the importance of future
rewards), and max, Q(s;1,4) the estimated optimal future g-value.

Q-learning updates g-values by supposing that the next action is the best one. It
is called "off-policy" strategy.

3.4.3 Definition of SARSA

SARSA is a Q-learning variant. The difference is in the g-value update formula:

Q(st,ar) < Q(st, ar) +u [”Hl + ¥Q(st4+1,ar41) — Q(st, at)] (3.3)

Instead of supposing that the next chosen action is optimal, SARSA takes as input
the action taken at the next time step, whether it is the optimal one or a random one
(decided by ¢). This strategy is known as "on-policy".

3.5 Related Work: AI Applied to Games

3.5.1 The evolution of Al for solving games

Even if the rules of contract bridge (Section[3.3) do not directly show how algorithms
struggle at mastering it, this game is a true challenge for Al for now and the near fu-
ture (Ventos and Teytaud, 2017). In order to understand what are the concerns about
mastering this game, other games” Al researches and their characteristics need to be
developed.
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Board games master players are starting to become less and less efficient against
computers since about 30 years ago. In 1979, BKG 9.8 (Berliner, 1980), which is
a Backgamorﬂ algorithm, beats a world champion for the first time in the history
of challenging board games. However, this one game played between the world
champion at that time and BKG 9.8 had some bias because of the rolls of dices. The
researcher behind this algorithm admitted that the rolls were strongly in favor of
the Al, discrediting the superiority of the program.

Game Al performances in 1998 Al performances in 2018
Connect Four  Solved Solved

Checkers Better than any human (Solved) Better than any human (Solved)
Backgammon  Better than any human except about 10 ~ Probably better than any human
Chess Better than all humans except about 250  Better than any human

Go Worst than best 9-year-old player Better than any human

Bridge Worst than best players at local clubs Well below world class level

TABLE 3.3: Performances of computer in board games in 1998 and 2018
(inspired by Smith, Nau, and Throop, 1998).
Updated for Go (Silver et al., 2017) and Bridge (Ventos et al., 2017).

The first official world championship title won by a program occurs for the game
of Checkersﬂ in 1994 with the Chinook algorithm. The method relies on the fact that
there is a proven winning strategy. Chinook is a program translation of the perfect
steps which lead to a sure win. If both players use it, it is proven that the game
results in a draw (Schaeffer et al., 2007).

Checkers is the most challenging solved game, unlike Chess, Go, and Bridge (putting
Backgammon aside because of the constant added randomness). These games re-
quire solving techniques that are more advanced than heuristic rules. In the case of
Chess, IBM’s DeepBlu beat Garry Kasparov, the reigning world champion in 1997.
The strength of this computer is the mix between brute-force tree searching and its
computational power, with 200 million move estimations per second.

Recent chess programs outperform humans by an even higher margin: 3200 Elo rat-
ingﬂ for the best Al, and around 2800 Elo rating for the best grandmasterﬂ

New techniques for Al methods needed to be developed, especially for Go, because
the complexity of this game is much higher than the ones stated before: the num-
ber of possible moves and the difficulty for estimating the quality of a configuration
make classic search trees useless. The most famous Go Al, Google’s AlphaG(ﬂ is a
combination of different Al techniques: deep neural networks, reinforcement learn-
ing, and advanced Monte-Carlo tree search. The task is divided into two main parts:

TRules of Backgammon: http://www.bkgm.com/rules.html

20ther names for Checkers: Draughts (British English), "Dames" (French):
https://en.wikipedia.org/wiki/Draughts

SCharacteristics of DeepBlue: http://www.ibm.com/ibm/history/deepblue

4Ranking system: https://www.thechesspiece.com/what_is_an_elo_rating.asp

*Highest Chess rank: https://2700chess . com/

Characteristics of AlphaGo: https://deepmind. com/research/alphago/


http://www.bkgm.com/rules.html
https://en.wikipedia.org/wiki/Draughts
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.thechesspiece.com/what_is_an_elo_rating.asp
https://2700chess.com/
https://deepmind.com/research/alphago/
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selecting the next move, and predicting the winner. Each of those is performed by
one neural network.

Another key point is the environment: who is playing against the program in the
learning phase. First, it is trained against high-level human players. Then, it uses
reinforcement learning to play against other versions of itself thousands of times
and learn from its errors.

After AlphaGo’s victory over world champion Lee Sedol, Google’s DeepMind lab-
oratory kept improving the performances and released AlphaGo Zero in late 2017
(Silver et al., 2017). This version does not use any human input, and is entirely
self-taught. Also, the structure of neural networks and their inputs are modified.

3.5.2 Imperfect information games Al research

Mastering Go is the latest hot topic in game Al. However, many wonder what could
be the next step. How to widen the capabilities of computer in games? As a re-
minder, all games described so far are perfect information games: everyone sees
everything that is happening at all time. Some recent reports state that the new
challenge could be imperfect information games. Card games like contract bridge,
hearts, poker or spades remain hard to master for machines, mostly because of
the lack of information and the psychological aspects (cooperation, bluff) of these
games.

Partially Observable MDPs (POMDPs): POMDPs is a variant of MDPs, where
each observation does not express the full environment. It introduces estimation
functions which aim at finding which real state is behing observations.

In POMDPs acting and planning methods (Kaelbling, Littman, and Cassandra, 1998),
an internal belief state is added to the agent and summarizes its previous experience.
The state estimator updates the belief state thanks to the last action, the current ob-
servation, and the previous belief state. The policy generated actions based on the
belief state.

The belief state is a probability distribution over all possible states.

Card games researches: Hearts is an imperfect information card game that has
been studied with POMDPs (Ishii et al., 2005} Fujita and Ishii, 2007). Each state is
estimated using the history of the current game, and actions are selected with RL
learning methods (Temporal-Differences learning).

Deep RL is an efficient tool to get some results, and was already applied to poker
(Heinrich and Silver, 2016).

Bridge AI has also been explored. Of course, the two main different phases of the
game (bidding and playing) add difficulty. Usually, researches only focus on one of
them. An important bridge technique is double-dummy analysis (Berlekamp, |1963):
supposing that every hidden card in the game and the contract are known, there is
an optimal way to play for each player, and a unique optimal score.
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Yeh and Lin, 2016 use deep RL in order to predict the distribution of suits in players
hands, using the sequence of bidding calls. Thus, they introduce a new bidding
standard which provide more information than the American Standard.

WBridge5 (Ventos et al., 2017) is the current world computer-bridge champion. It
uses boosting and seeding, and relies on double-dummy analysis. Seeding involves
generating samples of hidden card distributions based on the context. Such hy-
potheses are used in order to make the best move. This program cannot beat the
best humans yet.

In this project, such belief representation is not directly modeled. The target is to
teach a RL agent how to indirectly estimate it, thanks to direct observations of the
game.
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Methods

4.1 Contract Bridge Game Implementation

The very first concrete implementation step is meant to build an environment for the
learning agent. A RL environment needs to have rules which create new state based
on an action applied the previous one. It represents the state transition function of
an MDP.

In other words, contract bridge must be implemented such that given a state s; at
time ¢ and an action a;, the RL agent should receive an updated state s;,; based on
how the opponents play.

[ RL Agent ]

Action: Card ( ‘> State: Game observation, Reward

Contract bridge
rules and opponents

FIGURE 4.1: Contract bridge RL representation. Reward is given at the
end of each trick.

In order to apply RL methods, some key-points of the game implementation must
be considered:

e Class representation and major functions: Object-oriented implementation in

Python3 was used. Suit, Card, and Player classes are the bases of the imple-
mentation. The main class is Game, and each instance corresponds to a specific
game of contract bridge. A game includes four Player, which all have a dif-
ferent Position and a list of Card, as well as the contract information, whose
turn it is to play, the current trick (hashtable with Postion as key, and Card as
values), and the memory of the game (all previous tricks).

Such implementation enables to have access to all game’s variables, and to
return the one that the RL algorithm needs.

Transition function implementation: This function takes a card as parame-
ter and update every variable thanks to the rules. It updates the winner if it
changes. It adds the trick to the history, and resets it if the current trick is done
(if a multiple of 4 cards has been played in total).
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e Opponents’ strategy: Our RL methods focus on teaching an agent how to play
against a fixed opponent (not another agent). Different implementations are
made to compete against the agent.

First, opponents play their cards randomly. It is the easiest implementation,
but also the one which give the least difficulty. Thus, the agent is not prepared
to play against good opponents, and may struggle to perform at high level.

In order to theoretically strengthen the Al, a better implementation is made
from a rule based agent. It consists of a sequence of manually generated con-
ditions, aiming at making the best possible move in specific situations. For
example, if an opponent plays last and has a chance to win a trick, then he
plays the right winning card. In theory, the more advanced opponent, the bet-
ter the agent.

e Observation: A function which returns the observation based on the position
of a player is implemented. For example, in a real life game, the declarer sees at
all time his and the dummy’s hands, and the current trick on the table. He also
tries to remember the past tricks, in order to estimate the opponents” hands. In
the implementation, this comes as a list:

[declarer’s hand, dummy’s hand, current trick, trick history].

4.2 Complexity vs. Information Tradeoff

4.2.1 Complexity Problem

As stated in Section there are a few variables that can be observed at all time.
After each move, they evolve, creating a new observation. The important point here
is to keep in mind how many observations there are. In the case of the declarer’s
point of view, even if opponents’ cards are hidden, each distribution of cards is
almost unique. After the i* trick, the observation is:

e Declarer’s hand: 13 -i cards.

e Dummy’s hand: 13 - i cards, which represents (522_6!2i)! possibilities when com-

bined with the declarer’s hand.

e Current trick: 1 card taken from each player’s hand, i.e. (13 —i+ 1)* out-
comes.

4
e Trick history: All the previous tricks, i.e. ((131—?'“),) possibilities.

The number of possible observations after the i’ trick is:

(52 — 2i)!

13 \4
ey (188
e (1B =i 1) ( )!)

(13—i+1

Here, the assumption is that any card can be played at any time. But rules make that
number significantly decrease, because when a player opens a trick with a certain
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suit, other players have to follow with that same suit if they can. Also, in order to
win, players play certain cards in certain situations, making the generation of states
more deterministic.

At first, the temptation could be to feed the algorithm with as much information as
possible, in order to make it better. But such amount of details as input cause issues:
the g-value Q(s, a;) for any ¢, is going to be updated after initialization with very
low probability, because s; rarely appears as it is almost unique.

4.2.2 State Representation Optimization

- Poor performance - Best theoretical performance
- High convergence rate - Low convergence rate
Too general Too specific
| Information quantity i
I 1
Almost no \ Y J Most accurate
information representation
Right tradeoff
- Solid performance
- Reasonable convergence time

FIGURE 4.2: Comparison between information quantity (horizontal
axis) and performances. Finding the right tradeoff in state represen-
tation is key.

Information must be filtered and carefully selected.

As listed in Section an example state representation after the 1% trick could be:
o [2&,5&, 10&%, K&, 50,6$,8, 00, AO,80,6M, |#] (Declarer’s hand)

o [4d, 7, 30,90, ]O, K$,290,70,90,100,104, QM] (Dummy’s hand)

o [N: KM, E:44,S: 286, W: AM] (Current trick)

o [] (Trick history)

This representation belongs to the "Too specific" area of Figure When fed with
this kind of input, all RL algorithms struggle to converge and the performances do
not improve at any reasonable time.

A basic strategy of bridge is to count the sure tricks. In other words, the declarer
looks at his cards and the dummy’s, and finds out how many tricks he is sure to
win. For example, if he owns A, K, Q, and | of a suit in notrump play, and has
at least four cards of this suit in one of his or the dummy’s hand, four tricks are
assured.

Every advanced bridge player also keeps track of the history, like the state represen-
tation that was introduced. The only difference is that only high cards are useful.
For instance, when playing first, second, or third, playing Q can be a sure win if the
A and K of the same suit have already been played (notrump case).
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Such knowledge about the game suggest a high cards-oriented design of observa-
tions representation.

4.3 Modified Q-Learning

The focus is to find trends in order to select the best one, and look for more advanced
versions of them in the future. Thus, the range of focus is reduced to a subset of the
full game, and the structure of RL algorithms is modified to make them computa-
tionally faster.

Learning how to play a notrump contract from the declarer’s point of view: In
bridge, there are three different position at each trick:

e The declarer, who plays his cards and the dummy’s, and tries to reach his
contract.

e The player on his left, who tries to make the declarer/dummy pair not reach
their contract, and plays right after the declarer.

e The player on the right of the declarer, teammate of the previous player, who
plays right after the dummy.

The two last players, even if they are teammates, are asymmetrically positioned. It
is due to the fact that everyone can see the dummy’s cards. The focus of RL agents
in this project is to learn how to play as declarer, in any notrump contract.

Favor games which give the best information: Since using a pre-made database
of real games would lead to limits (running out of games, and not being compatible
with RL algorithms which need big data sets to converge), the selected learning
technique is automatic games generation. However, quality of such games is lower,
and the agent may converge slower than with actual professionally played games.
That is why those games are filtered and weighted:

e Filter by result: When teaching an agent how to play declarer, the learning
data set only conveys winning games. The reason is that deleting negative
examples prevent spending too much time on non-sense type of plays. Also,
because the opponents Al is a set of heuristic rules, they are supposed to play
with a decent level, so that games randomly won by the random agent are not
as easy to get as loses, but represent interesting data to learn from.

e Weight by win margin: Reward is always given at the end of the playing
phase (when players all have zero cards). The 100 points limit is not taken in
account, because it would imply taking care of the bidding phase too.

Bridge is a widely spread game, and variants exist. One of them is called Mini-
Bridge: it is a shortened form of the actual game, where the bidding phase is
simplified. The declarer is automatically determined by the dealing phase.
He is the player, among the pair which has the highest combined HP, who
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has the highest HP. Before the playing phase, he decides on which contract
he wants by looking at his cards and the dummy’s cards. Usually, this game
is introduced to new players, and there are lots of recommendations in the
Bridge literature on how to decide on the contract.

The contracts assigned to the generated games are determined thanks to crite-
ria which are introduced in such tutorials (see Table 4.1).

During the generation of games, when one of those satisfy the result condition,
the reward associated to this game is proportional to the winning margin. For
example, if the declarer and the dummy have 25 honour points in a notrump
scenario, and win 10 tricks to 3, the actions made during this game are fed to
the learning agent with a reward equal to 1 x constant, because the contract
corresponds to 3NT, and they exactly won 10 tricks. If the result is 11 tricks to
2, in the same situation, the reward becomes 2 x constant.

Honour points ~ 21-22 23-24 25-26 27-28 29-30 31-32 33-36 37+
Notrump 7(INT) 8(2NT) 9(NT) 10(4NT) 11(6NT) 11(5NT) 12(6NT) 13 (7NT)
Trump (&OOM)  7-8 9 10 11 11 12 12 13

TABLE 4.1: Table of correspondence between honour points and rec-
ommended contracts in Mini—Bridgeﬂ

Algorithms for games data set generation: The exploration phase of the RL agent
is divided into two main parts. First, games are generated and selected based on
their result (previous paragraph), and the stored in a database (Algorithm I).

The next step is the actual exploration: games are loaded and the agent learn from
them (Algorithm 2). The result is a trained agent (Figure[4.3).

This is equivalent to an exploration phase with ¢ equals to 0.

The Q-table modification: While the generation of games is constant in time and
fast, the learning phase can quickly become an issue. For each game (sequence of ob-
servations) fed to the q-agent, the learning become slower, because for the i game
learned, the agent needs to remember his Q-table resulting from all previous games.
Thus, there is no way to use parallel computing with RL algorithms. As memory
grows, it becomes slower to update. What’s more, in the case of Q-Learning and
SARSA, matrices are required (see Table[4.2), and it is costly in terms of memory.

A hash table representation is better in term of memory cost (Table £.3). It also
has a constant cost for inserting and accessing. For example, in Table adding a
pair (state, action) where state is new would also create 51 other cells, for all
other cards. With the hash table, only one memory cell is needed and other actions
are added later on, only if they appear for the specific state in the training set.

lMini—Bridge tutorial: https://www.nofearbridge.co.uk/minibridge/beginners_booklet.
pdf


https://www.nofearbridge.co.uk/minibridge/beginners_booklet.pdf
https://www.nofearbridge.co.uk/minibridge/beginners_booklet.pdf
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Exploration phase
Games generation Trained agent
Random agent vs. Heuristic rules

- (State 1, Action 1) Feed Exploitation phase
- (State 2, Action 2) Games dataset learning
. Q-learning, SARSA

FIGURE 4.3: Framework of a RL agent learning to play bridge.

How to cover everything? So far, the brain of the agent is trained thanks to the
generated data set. Also, the goal is to find the right tradeoff between game de-
tails and convergence speed. When the agent is in its trained form, playing means
searching in its Q-Table for the state, and find the action that maximize the score. If
among its current cards, no action is available, the agent has to play randomly. The
agent strength depends on the coverage of all possibilities.

In order to maximize the amount of details and keep a large range of known ac-
tions, information in each pair (state, action) is multiplied.
For example, if (s;, K#) leads to winning, positive reward is also given to (s, Q#)
and (s;, A#), and in some cases to (s;, J#) too. Of course, cards that are too different
are ignored. Also, the amount of reward given to close cards is decreasing as the
distance from the original card grows. The model is as follows:

e For K#, the agent learns the sequence (s, K#, reward, s;1).

e For Q& (respectively A®), the agent learns the sequence
(st, Qb (respectively AB), Yspreaq X Teward, sqy1).

e For J#, the agent learns the sequence (s, J#, 7§pread Xreward, S;i1).
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Algorithm 1: BRIDGE GAMES RANDOM GENERATION

1
2
3
4
5
6
7
8
9

10

11
12
13
14

Input: dataset_size (size of the games data set).

Output: Generated games data set with consecutive states and actions.

Initialize game data set;

while dataset_size > 0:

Initialize a game;

Initialize the list of states and actions for this game;
while the game is not done:

15 return game data set;

1;

Choose a random card from the agent’s hand;
Store the current action (card) and state (before the card is played);
Update the game based on this card and make the next opponent play;
Observe the next state;
Observe the reward;

if the game is won by the random agent:
Store the list of states and actions of the game in the data set;
Store the reward and the contract information;

dataset_size —=

Algorithm 2: AGENT LEARNING HOW TO PLAY BRIDGE

Data: Game data set (pre-generated games with consecutive states and

actions)

Output: Trained agent
Initialize RL agent;
for game in game data set:

Get the reward for this game;
while the game is not done:

Get the current state, the action, and the next state;

Feed the agent with the current state, the action, the reward, the next state

(and the next action for SARSA);

7 return RL agent;

Q-Table:

TABLE 4.2: Q-Table default representation.
For each new state s;, a whole row of size n must be created,
and all Q(s;, ax), for k € [1,n], have to be initialized.
In the end, the table is sparse.

a1 an
51 Q(Sl,ﬂl) Q(Slzan)
Sm Q(S;’H/al) Q(S;’ﬂlan)
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{si: {ay: Q(s1,ay), ..., @l Qlsy, i, ),
Q-Hash-Table: :
sm: {a)": Q(sm,ay"), -, @ 2 Qs @y )} )

TABLE 4.3: Q-Hash-Table representation. Each new pair

(state, action) does notinvolve creating useless spaces.

Si . . .
u/ is the i'" seen action for state Sj.
s, is the number of actions seen for state s -



22

Results

51 Q-Learning and SARSA

Preliminary study: In order to fully understand how to optimize the state repre-
sentation optimization, a study on a reduced bridge game has been performed. A
simple 12-card game was designed, and Q-learning and SARSA both tested. At this
step, games generation and exploration are part of the same process. The impor-
tance of this preliminary study is high, because signs of positive results confirm the
possible development of the project.

Agents are trained and tested against a random strategy, and on some specific deals
(in order to lower the size of the steps set). The observations have the form:
[declarer’s hand, dummy’s hand, current trick, trick history], and all the
cards are taken in account. Both algorithms converge to the optimal path to victory
in a reasonable time. Q-learning is the fastest: it consistently finds the the winning
moves after it has seen all the possible moves once. SARSA is ten times slower,
probably due to the regrouping of generation and exploration: the reward is only
known in the end, so that randomly exploring actions makes the positive values of
the Q-table slow to spread. Q-learning updates its g-values based on the optimal
best next move, so that reward value spread faster.

Performances and details for Q-Learning and SARSA: For the full game study,
using the methods described in the previous chapter, several states representations
were tested.

Overall, the human experience of bridge is useful to understand which representa-
tion is the best: high cards-focused observations outperforms others when it comes
to convergence time. Adding lower cards to the states does not make performances
better. It only increases convergence time.

Two kinds of state representation are interesting in term of performances and quan-
tity of information.

¢ Known hands:

[declarer’s and dummy’s hands, current trick, trick history], keeping
the full information for the current trick, and only taking care of K, and A for
the hands, and Q, K, and A for the trick history.

Example: [[K&, Ad, KO, AQ, K], [+, -, -, J&], [KO, QU]] means that the
agent’s (who plays as declarer) team owns five "important” cards (K and A),
only one play played in this trick so far (W played Jé&), and in the previous
tricks, two "important" cards were played (among all Q, K, and A).
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e Unknown hands:

[current trick, trick history], keeping the full information for the current
trick, and only taking care of Q, K, and A for the trick history.

Example: if the game is in the same exact state as in the previous example,
[-, - - ], [KO, QU]] becomes the observation. The agent loses the knowledge
of his own cards.
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FIGURE 5.1: Q-learning & SARSA agents’ ratio of victory compared to
a random play style, and the proportion of recognized states through
the learning phase.

Results (Figure are shown for Q-learning and SARSA, for the following pa-
rameters: learning rate « = 0.3, discount factor v = 0.9, and spread coefficient
Yspread = 0.8. The defending pair (declarer - dummy’s opponents) is playing accord-
ing to the previously mentioned rule-based Al. A random declarer agent is strug-
gling to win against this Al (30% win rate): it makes sense, and also shows that the
balance between a chosen contract and the declarer’s pair HP is well defined.

State representation makes a bigger difference on convergence time and perfor-
mances than RL algorithms. Q-learning and SARSA seem to have the same con-
vergence rate and maximum performances. Their level is also strongly correlated
with the number of states they know. In parallel with the performance testing, the
ratio of known states over the total number of states of the test set (1,000 games
repeated and averaged) is added (Figure [5.2a). In addition, the total training phase
(15,000 games) takes around 30 hours.

There seems to be a slight difference between the curve for each state represen-
tation. Even though the known hands configuration creates more states (harder
to reach a high ratio of known states), the effect on performance is bigger: "Q-
Learning Known Hands" performance keeps a steady growth after 7,500 games
seen, while "Q-Learning Unknown Hands" and "SARSA Unknown Hands" strug-
gle to get higher winning percentages.
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There are two complementary interpretations:

e RL agent ultimately needs more information than in "Q-Learning Known Hands"
method if a higher level is the goal. With a longer training phase (around
100,000 games), "Known Hands" types of methods outperforms the previous
ones.

e Training against heuristic strategy brings an inevitable threshold to the playing
level of any RL-agent. Even if contracts are efficiently set, some extreme card
deals may bring an impossible configuration for the agent to win. Both state
representations would converge to the same winning rate (around 90%).

The irregular growth for the SARSA and Q-learning curves (blue and orange) before
10,000 games is tricky to interpret. The reason could be bias: even if performance
metrics are calculated several times on different learning sets and then averaged,
the fact that the average is made over a small number (around 10) of different learn-
ing events could be the cause. The relationship between each spike could happen
because of the fact that small learning samples are used to build bigger ones, so that
the tendency of maxima and minima remains.

The stop of this irregular growth also introduces a question mark. One probable
speculation could be that the subset that makes the spikes is not used anymore in
the learning phase. Also, it does not seem that it is correlated to the state space: the
"Known Hands" configuration does not show such irregularities. The green curve
was generated thanks to the same procedure as the others, so it is hard to conclude
for the bias argument.

The spread technique (developed in the last paragraph of the Methods chapter) helps
to get a higher convergence rate. However, the information added at each learning
step is often useless. For example, in both state configurations, the cards added by
the spread could already be part of the played card. Example: if the agent plays K,
and A in in the history, learning to play A& does not make sense. Such anomaly
does not affect the exploitation phase, since the agent always selects the card in his
hand which provides the highest g-value.

Combining information: The main issue about Q-learning convergence is depen-
dence: in order to get an agent which knows 100 states, a 99-state agent is need. To
counterbalance the lack of computational power and the unfinished convergence of
such methods, different g-tables are combined. New information is added as it is,
without modifying g-values. However, a problem occurs when two g-tables have
a different g-value for the same pair (s¢,a;). To cope with that, average values are
taken, and each value is also associated to the number of time it is combined, in
order to compute averages.

This technique, applied to the same setup as "Q-Learning Known Hands", and with
g-tables made from less than 2,000 games, is less efficient. Unlike figure the
curve on figure is steeper than on figure the amount of information that
each Q(st, at) conveys for the methods "Q-Learning Mix" is lower than for the previ-
ous methods. In other words, given the same number of states, "Q-Learning Known
Hands" makes a better use of them than "Q-Learning Mix".
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FIGURE 5.2: Combinaition of Q-learning agents’ performance, and the
proportion of regonized states through the learning phase.

Play style and level of the best agents: The level of play of the rule-based agent
(opponent) is below the average human level: it is beatable around 80% of the time
(tested with me, a beginner-average level player). The performance of the agent
for declarer play and notrump contract seems to be acceptable. The play style of
best agents consists of focusing on high cards first, and playing low cards when the
teammate has played a high one. Such strategy is often introduced in bridge books.
It also does not risk wasting high cards if it is not present in the history.

5.2 Critical look - How to improve it?

5.2.1 Critical angles

Can these results be extended to other possibilities of the game of bridge?

Even if the whole analysis is focused on notrump play, RL allows flexibility when it
comes to the kind of tasks. For a trump contract, the current agents would probably
not perform well, because the rules are too different, and they would not know how
to outplay their opponents.

Implementing such an agent involves understanding the stakes of trump play. State
representation would have to be modified: in theory, the important cards of notrump
situations remains, and the cards of the suit which correspond to the contract are all
very important (not only the strong ones), because in some cases, they can beat any
other cards.

Playing as defenders is also interesting, since each player of the defending team
sees the game differently (asymmetrical views due to the cards of the dummy). One
agent for each of them need to be trained. Challenging issues emerge: in which or-
der are they trained? Is training both of them together working?
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When teaching the agent to play against a heuristic technique, the learning sam-
ples are biased. This technique limits the played cards in specific situations. What
if the trained agent meet an unknown state?

Generated games are biased, but so are real games. Bridge players play coherently
and do not make absurd moves. Implementing heuristics rules mimics real-life play
style. Because it is hard to implement an advanced heuristic strategy, these rules
are limited and random play is done when the situation is ambiguous (for instance,
if winning at 100% cannot be achieved). All in all, such semi-advanced opponents
bring less bias than top players, and cover advanced play styles too.

Why learning with winning games only?

Winning games brings the most information: the goal is the find the right moves,
so that feeding the agent successful ways the win has to be part of the process.
However, negative examples could also help to learn how to not make errors.

The choice of putting aside this part of the games set is made because of computa-
tion time: adding more games increases the learning time. Also, when converged, a
RL agent knows, for each state, the best converged value for actions. The most effi-
cient usually has the highest g-value. In theory, the best action at each step should
be the same whether negative examples are added or not.

How to increase the performance threshold introduced by the rule-based oppo-
nent?

One of the next step of this project is to push the performances of agents further. In
order to do so, heuristics can be improved. It implies knowing the right play to do
in more diverse situations, and taking care of not making the rule-based opponent
more biased than a real player.

Letting agents train themselves against one another sounds like a more flexible way
(Figure [5.3), which enables theoretical limitless level. The main concern about such
technique is being stuck in local optimal strategies, similarly to those in the opti-
mization field. To counter this, a solution is to introduce more randomness to the
learning phase: for example, training a random agent against a trained agent until
it outperforms it, is a decent strategy. An e-greedy RL agent, with ¢ equal to around
0.5, keeps the previous information in mind and still tries to improve sometimes.

5.2.2 Deep Q-Learning

Applying DON to the same sample size as the previous algorithms seems to be the
next big step of this research. For now, it has shown basic results on small learning
data sets: it has a better win rate than a random agent when playing against the
same heuristics as the one introduced previously (42% win rate on average when
trained with 1,000 games).

Frameworks and parameters have to be built and tuned efficiently. Since it needs
the use of specialize libraries (Tensorflow, Keras), algorithm customization, as well
as the usage of theoretical and structural knowledge of the techniques is not a easy
as before.
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Exploration phase
Games generation Trained agent
Random agent vs. Trained agent

- (Statel, Action 1) Feed Exploitation phase
- (State 2, Action 2) Games dataset learning
- . Q-learning, SARSA

FIGURE 5.3: Updated framework for the bridge learning phase: multi-
agent training.

DQON is promising, because its main feature is to translate the states from discrete
to continuous. Even if a state is unknown, an estimation of the best move can be
performed thanks to similar known states.
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Personal Analysis

6.1 Discovering a Japanese research environment

Performing research in a Japanese laboratory is challenging: the habits and the lan-
guage are different from what I was used to. With the time, adaptation helped me
to be more efficient performing my own work. I am comfortable with English and
have a good working knowledge, but there is always a delay when it comes to fully
understand technical vocabulary.

I had the chance to earn a lot of different scientific pieces of knowledge, as the labo-
ratory holds some seminars and journal clubs every week. Seminars allow to have
an idea of what others do in the lab. They are wide in term of topics, and teach a lot
about how a research topic is tackled. It always gives new ideas.

6.2 Main Challenges

Since the project was performed on my own, with Prof. ISHII and Mr. NAKAE as su-
pervisors, I had to be proactive and take initiatives. In my opinion, communicating
with others, asking for details instead of loosing hours looking alone for inaccessible
information, and crossing opinions and ideas in order to move on effectively are the
most important things to remember.

Organization is also key. Working most of the time alone implies having a clear idea
of what must be done and what the future plans are. This is the first time that I faced
such a configuration, and I learned a lot from it: I used personal organization tools
(Trello, for instance) in order to stay up-to-date.

As the working environment is a laboratory, objectives are more blurred than in a
company environment. The goal is to go as deep as possible into the theme. In a
research laboratory like here, the more mistakes and useless results are made, the
more interesting results and conclusions will occur.

Overall, this helped me a lot to build my thoughts concerning my future career.

The setup of this project is atypical, because I attended classes through the whole
year, so that the research was performed half of the time.

Having two main things to deal with is not an easy task, especially when one tends
to take over the other. For example, when class projects are happening, laboratory
research’s time has to be reduced. Then, when coming back to the research, it is
challenging to dive back in it and to get to cruising speed. In general, it helped me
to find ways to stay motivated.
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Conclusion

Most games Al researches focus on reinforcement learning based techniques. They
enable task flexible, thanks to their model-free structure. However, most of the cur-
rently mastered games are board games: imperfect information games are still an
issue for computers.

Here, reinforcement learning methods are applied to contract bridge in order to
compare them, and look for the key points of the game. Focusing on some details
rather than others makes performances increase considerably, whereas giving too
much details to the agent slows down the convergence time. Strong cards are the
most important features for observations, and not showing which cards the agent
has does not affect performances in this setup. The learning framework is also cus-
tomized. Games are pre-generated and filtered, so that rewards are known at the
start of the games, saving g-value spreading time (especially for SARSA). Covering
the state space is also facilitated thanks to the hypothesis that similar cards offer
similar outcomes. Finally, the fact the implementation is flexible allows the modifi-
cation of g-tables’ structure, saving memory and time.

Competing against advanced human players still seems far, but current results show
promising improvements and establish a basic for the future of this research. Adding
more advanced techniques like deep learning could help to cover even more states.
Future plans also include involving several agents in the learning phase, and start
learning with a better rule-based agent.
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Summary (French)

Ce projet de fin d’études vise a explorer des méthodes d’intelligence artificielle ap-
pliquées au bridge. Ce jeu de carte est un défi pour les méthodes actuelles puisqu’il
met en scene deux paires de joueurs qui s’affrontent, et au sein desquelles les joueurs
doivent coopérer tout au long de deux phases de jeu afin de I'emporter. Cet aspect,
couplé a I'incertitude qu’introduisent les cartes cachées, présente plus de difficultés
que les jeux de société déja maitrisés par les algoritmes les plus récents (jeu de Go
avec AlphaGo Zero de Google en 2017).

L’apprentissage par renforcement, branche de I’apprentissage automatique (ou ma-
chine learning), consiste a laisser évoluer un agent intelligent dans un environ-
nement inconnu. Il y apprend les mécaniques, et comment adopter un comporte-
ment optimal. Un des avantages de cette méthode est 1’absence de modele. La phase
ou l’agent explore et exploite librement son environnement fait la distinction entre
apprentissage par renforcement et autres techniques de machine learning. En effet,
ces dernieres se concentrent ptirement sur de 1’exploitation de données.

Q-learning et SARSA sont les principales méthodes utilisées. Pour les deux, I’agent
associe, pour toute configuration, un score a une action. En répétant ce processus, il
trouve vers les meilleures actions pour chaque situation (i.e., celles qui maximisent
la somme des scores).

Q-learning requiert de recevoir une observation, une action, 'observation résul-
tante, et une récompense calculée en fonction de la performance liée a I’action effec-
tuée. Le score pour cette paire action/observation est ensuite mis a jour en fonction
de la récompense, et du score maximal futur associé a I’action résultante.

SARSA a pour différence d’ajouter ’action suivante a la liste des variables que regoit
I'agent. La mise a jour du score pour 'action et 1’état courants requiert alors la ré-
compense, mais pas le score maximal futur: a la place, le score pour 'action suivante
est prise en compte.

Ces méthodes sont légerement ajustées et les observations sont modélisées avec soin
afin d’avoir un agent qui converge rapidement et qui joue avec un niveau correct.
Les cartes observées sont notament sélectionées de sorte a ne garder que celles qui
font directement gagner des manches.

Les résultats montrent que les agents d’apprentissage par renforcement obtiennent
des performances convenables apres un temps d’apprentissage raisonnable. La na-
ture de ces résultats amenent plusieurs questions d’interprétation et de nouvelles
problématiques en émergent.

Ce project permet d’ouvrir des perspectives pour 'apprentissage par renforcement
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du bridge. Améliorées et couplées a I'apprentissage profond (deep learning), les
méthodes actuelles peuvent prétendre a un niveau de jeu similaire a celui d'un
joueur humain expérimenté.
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